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Summary

This report describes the development of an interaction data base and a numerical solution
to the transport of baryons through an arbitrary shield material based on a straight ahead

approximation of the Boltzmann equation. The code is most accurate for continuous-energy

boundary values but gives reasonable results for discrete spectra at the boundary using even

a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H20). The

resulting computer code is self-contained, efficient, and easy to use. The code requires only a

very small fraction of the computer resources required for Monte Carlo codes.

1. Introduction

As NASA continues to develop a vigorous space program, tools for the analysis of optimum

shielding against space radiation are a continuing requirement. The tools must ultimately

account for the very complex mixture of radiations in the space environment and be complete

in the physical description of the processes involved. An incomplete model must, by necessity,

have restricted capabilities that are not always appreciated at the engineering level and may
cause errors in vehicle design. Still, a complete model must be computationally efficient in order

to provide a useful tool for design work. In order for the model to be used with confidence,
some effort toward model validation must be made,

Space contains the most complicated mixture of diverse radiation components known. When

these components interact with materials, many new and varied radiations are produced. This

places enormous demands on tools for model development analysis. Furthermore, a common

basis for assessing risk from such an environment is in itself a challenge to model development.
The model must likewise allow for all potential elemental materials and allow inhomogeneous

configurations. The present work is the beginning of this task.
Monte Carlo computer codes have been written that meet many of the above requirements

(ref. 1). However, the enormous computational requirements have caused their use to be avoided

in the space program. In an earlier report (ref. 2), we presented a relatively complete transport
code for high-energy nucleons. The data base for that code was complete but somewhat

inaccurate. The purpose of the present report is to describe both the improved computer

programs developed for the calculation of the transport and the interaction of high-energy

nucleons (baryons) with materials. The methods, based on the direct solution of the Boltzmann

equation, have been developed over the last several years (refs. 2 to 5). The present goal is

to document a relatively complete description of the basic physical processes and an improved

input data base. Future work will concentrate on improving the data base and validating the

computational procedures.

2. Theoretical ConsiderationsmThe Boltzmann Equation

In moving through bulk material, particles give up energy to the medium through

atomic/molecular and nuclear interaction. These processes are described by a Boltzmann-

like equation that we use in a time-independent form. The equations in the straight ahead

approximation to be solved (ref. 1) are

o a/E)] ¢p(x,E)ox  S(E) +
)

fpj(E, E') Cj(x, E') dE' (2.1)

] /;+ an(E) Cn(x,E) = _. fnj(E,E')¢j(x,E')dE'
3

(2.2)

[ OOx o_utS(E)] ¢t(x'E)= __ foo°cftj(E'E')¢j(x'E')dE'. (2.3)
3

where Cj(x, E) is the differential flux density of type j particle at x with energy E; S(E) is
the proton stopping power; vt is the ion-range scaling parameter; ap(E) and an(E) are proton



andneutrontotal crosssections,respectively;and fij(E, E') represents the differential cross
sections for elastic and nonelastic processes. It is convenient to define new field quantities as

fo E dE/S(E )F:

Cj (x, r) = S(E) Cj(x, E)

fij(r, r') = S(E) fij(E, Et) (2.6)

so that

[oo 1 /?O-r + ap(r) Cp(X, r) = _ fpj(r, rt) Cj (x, rZ) drt
3

;

[o ] /r
J

3 : :

(2.7)

(2.8)

(2.9)

which can be rewritten as integral equations with the boundary at x = 0. The following results

are given:

[/0x ]Cp(_, r) = exp - _p(r + z)dz Cp(0, r + x)

(2.10)

¢.(x, _) = exp [--_n(r)_] ¢,_(0,_)

+ foXdzexp[-a.(r)z] __. _?,O(r,r')¢j(x- z,r')dr '
3

(2.11)

/o•Ct (x, r) = dz ftj (r + utz, r') Cj (x - z, r') drZ (2.12)
• =

The fimctions and coefficients of equations (2.1) to (2.12) are presented in the next section.

3. Transport Coefficients

3.1. Stopping Power

In passing through a material, an ion loses the larger fraction of its energy to electronic

excitation of the material. Although a satisfactory theory of high-energy, ion-electron inter-
action is available in the form of Bethe's theory utilizing the Born approximation, an equally

satisfactory theory for low energies is not available. Bethe's high-energy approximation to the

energy loss per unit path (that is, stopping power) is given as

(3.1.1)

where Zp is the projectile charge, N is the number of target molecules per unit volume, Zt is
the number of electrons per target molecule, re is the electron mass, v is the projectile velocity,
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= v/c, c is the velocity of light, C is the velocity-dependent shell correction term (ref. 6),

and It is the mean excitation energy given by

Zt ln(It) = _ fn ln(En) (3.1.2)
n

where fn represents the electric dipole oscillator strengths of the target and En represents the

corresponding excitation energies. Note that the sum in equation (3.1.2) includes discrete and
continuum levels. Empirically, it has been observed that molecular stopping power is reasonably

approximated by the sum of the corresponding empirically derived "atomic" stopping powers
for which equations (3.1.1) and (3.1.2) imply that

Z ln(I) = _ njZj ln(Ij) (3.1.3)

j

where Z and I pertain to the molecule, Zj and Ij are the corresponding atomic values, and

nj represents the stoichiometric coefficients. This additive rule (eq. (3.1.3)) is usually called
Bragg's rule (ref. 7).

Sources of deviations from Bragg's additive rule for molecules and for the condensed phase

are discussed by Platzman (ref. 8). Aside from shifts in excitation energies and adjustments

in line strengths as a result of molecular bonding, new terms in the stopping power appear to

be due to coupling between vibrational and rotational modes. Additionally, in the condensed

phase, some discrete transitions are moved into the continuum, and collective modes among
valence electrons in adjacent atoms produce new terms in the absorption spectrum that must

be considered. It is usually assumed that the experimentally observed additive rule shows that

molecular stopping power is the sum of atomic processes. In contrast, Platzman proposes that
molecular bond shifts for covalent bonded molecules are relatively independent of the molecular

combination, thus resulting in an additive rule. On the basis of such arguments, Platzman

suggested that ionic bonded substances should be studied as a rigid test of the additive rule
because of the radical difference in bonding type. He further estimated that ionic bond shifts

could change the stopping power by as much as 50 percent. Recent results of molecular bond

shifts on mean excitation energies are discussed in references 9 to 11. Effects of the physical

state have likewise been studied (ref. 12).

The electronic stopping power for protons is adequately described by equation (3.1.1)

for energies above 500 keV for which the shell or "tight binding" correction C makes an

important contribution below 10 MeV (ref. 13). For proton energies below 500 keV, charge

exchange (electron transfer) reactions alter the proton charge over much of its path, so that

equation (3.1.1) is to be understood in terms of an average over the proton charge states.
Normally, an average over the charge states is introduced into equation (3.1.1) so that the

effective charge is the root-mean-square ion charge and not the average ion charge. At any ion

energy, charge equilibrium is established very quickly in all materials. Utilizing the effective

charge in equation (3.1.1) appears to make only a modest improvement below 500 keV, an

indication presumably of the failure of this theory based on an empirical basis (refs. 13 and

14). We have utilized empirical fits to the proton data; the resultant stopping power for protons
in water is shown in comparison with the evahmted data to Bichsel (ref. 15) in figure 1.

The electronic stopping power for alpha particles requires terms in equation (3.1.1) of higher

order in the projectile charge Zp resulting from corrections to the Born approximation. The
alpha stopping power cannot be related to the proton stopping power through the effective

charges. Parametric fits to experimental data are given by Ziegler in reference 16 for all elements

in both the gaseous and condensed phases.

The electronic stopping power for heavier ions is related to the alpha stopping power through

the corresponding effective charges. The effective charge suggested by Barkas (ref. 17) is used:



whereZp in equation (3.1.4) is the atomic number of the ion.

At sufficiently low energies, the energy lost by an ion in a nuclear collision becomes

important. The nuclear stopping theory used in this paper is a modification of the theory
of Lindhard, Scharff, and Schiott (ref. 18). The reduced energy (dimensionless) is given as

32.53ApAtE
e = (3.1.5)

XpZt(Ap + At) (Z2p/3 + Z2/3) 1/2

where E is in units of keV/nucleon and Ap and At are the atomic masses of the projectile and

target, respectively. The nuclear stopping power Sn in reduced units (ref. 16) is

1.59e 1/2 (_ < 0.01) }

Sn = 1.7eI/' ln(e+e') (0.01 < e < 10) (3.1.6)
l+6.8e+3.4e3/2

(10 < _)

and the conversion factor f to units of eV/1015 atoms/cm 2 is

f = 8.426ZpAtAp

+ +
(3.1.7)

The total stopping power Sj is obtained by summing the electronic and nuclear contribu-
tions. Other processes of energy transfer such as Bremsstrahhmg and pair production are
unimportant.

For energies above a few MeV/nucleon, Bethe's equation is adequate provided that appro-

priate corrections to Bragg's rule (refs. 9 to 11), shell corrections (refs. 6, 13, and 14), and
an effective charge are included. Electronic stopping power for protons is calculated from the

parametric formulas of Andersen and Ziegler (ref. 13). The calculated stopping power for pro-

tons above a few MeV in water is shown in figure 1 in comparison with data given by Bichsel
(ref. 15).

Because alpha stopping power is not derivable from the proton stopping power formula using

the effective charge at low energy, the parametric fits to empirical alpha stopping powers given
by Ziegler (ref. 16) are used. Applying his results for condensed-phase water poorly represented

the data of references 19 and 20. Considering that physical state and molecular binding effects

are most important for hydrogen (ref. 9), the water stopping power was approximated by
using the condensed-phase parameters for hydrogen and the gas-phase parameters for oxygen
(which are known experimentally). These results are compared with experimental data for

condensed-phase water (refs. 19 and 20) in figure 1. It appears that Ziegler overestimated the

condensed-phase effects for oxygen, since the gas-phase oxygen data gave satisfactory results
as seen in figure 1.

Electronic 'stopping powers -for ions with a charge greater than 2 are related to the alpha

stopping power through the effective charge given by equation (3.1.4). For water, the condensed-

phase fornmla of Ziegler for alpha particles gives probably the best stopping powers for heavier
ions. Calculated results for 1°O and 56Fe ions in water are shown in figure 1 in comparison

with the Northcliffe and Schilling data (ref. 21). Good agreement with Northcliffe and Schilling

for 56Fe ions is especially important since their data seem to agree with the range experiments

of J. H. Chan in Lexan material, a polycarbonate resin developed by The General Electric
Company (ref. 22). The stopping powers in Lexan resin and tissue-equivalent material can be

calculated in a way similar to the procedure given above for calculating the stopping powers in
water.
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Althoughthe abovemethodsare thebestyet available,theydo not adequately represent

the data at all energies and elements. The energy loss per unit path length is given by

47rNZ2Zte4 B (3.1.8)
Se - mY 2

where an approximate representation of true stopping number B is given in the braces of

equation (3.1.1). The determination of Se then rests upon the accurate knowledge of the mean
excitation energy It and the shell corrections C. In practice, one invokes some sort of parameter

fitting involving the experimental data on stopping power and the quantities It and C.

We have recently initiated a different approach of calculating the stopping power of

atoms. The main thrust of this approach is to calculate exactly, in the context of the Born

approximation and nonrelativistic wave functions, the stopping number B with no assumptions

such as those underlying the Bethe theory leading to equation (3.1.1). Thus, the knowledge of

B would rest on knowing the radial integrals for the process of excitation as well as ionization

when a projectile passes through matter. To the best of our knowledge, this approach seems not

to have been tried even for the helium atom. We have recently calculated the radial integral

for the optically allowed transitions in the He atom and helium-like ions using the screened

hydrogenic model. The model describes the atom by single-particle hydrogenic wave functions
and treats the initial state and the final state by two different, effective charge parameters Zi

and Z f, respectively. The model is able to reasonably reproduce the existing dipole oscillator
strength values with little effort, and nonrelativistic numerical values for bound-bound and for

bound-continuum transitions are available for many target helium-like ions. Tile model has

also been successful in reproducing the known dipole polarizability values and in predicting

the other unknown values. Once the radial integral is evaluated for all momentum transfers,

it is an easy matter to obtain the stopping power of the helium atom for a projectile such as a

proton or a heavy ion. The same approach then could be extended to include other atoms.

This approach is an ambitious undertaking but is more satisfying in that the calculations
are made directly for each atom, thereby avoiding the inherent approximations underlying the

Bethe equation (3.1.1). Thus, the calculations do not involve the apparent fittings involving

parameters such as It and C. Furthermore, the ejected electron distribution in energy and

angle as well as the atom excitation spectrum should also be available through this approach.

3.2. Total Nuclear Cross Sections

After many decades of experimental activity at various accelerators with ever-increasing

energies, the cross sections for two-nucleon interactions are reasonably well-defined. Although

recent advances in the theory of the two-nucleon interaction in terms of phenomenological

meson exchange models (ref. 23) show considerable success, a simple parameterization of the

experimental data is sufficient for our purposes. For E > 25 MeV, the proton-proton (pp) total

cross section (mb) is found to be reasonably approximated by

app(E) = (1+ 5){40+ 109cos(0.199v/E)exp [-0.451(E-25)0258]} (3.2.1)

and for lower energies, by

app(E) = e 6"51e-<E/134)o'*

These forms are compared with experiments (ref. 24) in figure 2.

neutron-proton (np) cross section is taken as

(3.2.2)

For E _> 0.1 MeV, the

anp(E) = 38 + 12 500exp [-1.187(E- 0.1) 0'35] (3.2.3)

and at lower energies, by

O'np( E ) : 26 O00e -(E]0"282)°3 (3.2.4)
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These forms are compared with experiments (ref. 24) in figure 3.

The low-energy, neutron-nucleus total cross sections exhibit a complicated fine-resonance

structure over a broad, slowly varying background. This background is marked by very broad

Ramsauer resonances that persist even to neutron energies of 100 MeV. Although a simple

fundamental theory for the Ramsauer resonances is not available, a semiempirical formalism is

given by Angeli and Csikai (refs. 25 and 26). Their formalism starts with the usual partial-wave
expansion as

at = 27rA 2 E(2g + 1)[1 - Re(r_g)] (3.2.5)

with

r/_ = e/St (3.2.6)

where 5g is the complex phase shift for the gth partial wave and Re(Z) denotes the real part of

Z. In the opaque nucleus model, the fact that ne _ 1 for all values of g > R/A, where R is the

nuclear radius, leads Angeli and Csikai to assume that

at ,,_ 2_(R + A)211 - Re(q)] (3.2.7)

where 7/= 0 gives the usual, opaque nucleus result such that

(3.2.8)

is a reasonable starting point to parameterize tile total cross sections, where Im(5) denotes the
imaginary part of & Their complete parameterization is

_t = 27c(roA_/3 + A)2[a - pcos(qA_/3 - r)] (3.2.9)

where r 0 = 1.4 fm, and the neutron wavelength is

4.55 At + 1

A- v/_ At (3.2.10)

The parameters of Angeli and Csikai are adequately approximated by

1
a = (3.2.11)

1 + [2/(3.8E + 0.1Ev/E + 0.1E3v_)]

p = 0.15 - 0.0066V_

q = 2.72 - 0.203v/-E

r = min{-5.3 + 1.66x/-E; 1.3}

(3.2.12)

(3.2.13)

(3.2.14)

Strictly speaking, equations (3.2.9) to (3.2.14) apply only to At > 40 and 0.5 < E < 40 MeV. A

simple extension to all values of At and 0.1 < E < 100 MeV gives qualitatively similar results

to the experimental data and provides a starting point to representing the total cross section.

The cross sections given by equations (3.2.9) to (3.2.14) are shown in figure 4. This should be

compared with the experimental data (ref. 27) shown in figure 5. Note that the data in figure 5

have only the broad resonances shown. The very narrow resonances have been averaged. We
now seek some modification to the Angeli-Csikai cross sections to better approximate the total
cross sections.
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Ourmodificationsto theAngeli-Csikaiformalismareasfollows:
1. If At > 75, then a is taken as 0.18 for values of equation (3.2.11) less than 0.18.

2. The value of p is taken to be greater than 0.4a unless At > 76 for which p can be as
small as 0.3a.

3. A modifying factor of 1 + De -aE is used with

D= _'0"5 (145<At <235)
[ 1.0 (Otherwise)

and

1.0 (205 < At < 235)a = 2.0 (Otherwise)

4. An additional modifying factor is applied as

Fl {1- O.5 exp [-(At - 63.54)2 /20]

-0.45 exp [-(At- 58.71)2/4] exp(-2E)+ F2}

where

0.7 (At <63;E_<0.8)F1 = 1.0 (Otherwise)

0 (E > 0.5)
F2 = -4.95e -lsE (40__ At < 42)

-1.79e -15E (32 < At < 34)

5. If At < 30, then numerical interpolation between experimental values is used.

The final cross sections as modified above are shown in figure 6 and should be compared with

figure 5.

The total cross sections above 100 MeV have been taken from reference 28. The high-energy

cross sections of reference 28 have been approximated by

fltot(At, E) = 52.5A 0"758 [1 + (0.8 + 2.4e-A'/30)e -E/135 sin OE] (3.2.15)

where the phase angle is given by

14.41 (E _ 40 MeV) }OE = 1.291n2(E)-_r (E > 40 MeV) (3.2.16)

The expressions (3.2.15) and (3.2.16) are shown in comparison with the theory of Townsend,

Wilson, et al. (ref. 28) and a compilation of experiments in figures 7 to 10. Equations (3.2.9) to

(3.2.14) are connected smoothly at 70 MeV to the results of equations (3.2.15) and (3.2.16) at
130 MeV with an assumed exponential dependence on energy. The total cross section is used

to calculate the scattering cross section as

O's (E) = O'to t (E) - flabs (E) (3.2.17)

The total (tot) neutron-nucleus cross section is shown in comparison with experimental data

(ref. 27) in figures 11 to 14. (Experimental data are shown as the dashed curve.) Also shown

are the cross sections (listed as "prior") used in reference 2. Clearly, the present result is a

great improvement.

3.3. Nuclear-Absorption Cross Sections

Qualitatively, the nuclear-absorption cross sections show an energy dependence similar to

that observed for the total nuclear cross sections. An analytic formula for protons was derived

7



by Letaw et al. (ref. 29) by first fitting the cross sections of Bobchenko et al. (ref. 30) with the
formula

_rA = 45A°'7{1 + 0.016sin[5.3 - 2.63In(At)l} (3.3.1)

where At is the mass number of the target nucleus. Equation (3.3.1) reproduces the Bobchenko
data to within 4-2 percent (ref. 29). A somewhat better fit to the Bobchenko data is given by

aA = 45A°'7(1 - 0.018 sin hA) (3.3.2)

where the angle OA is

b A = 2.94 ln(At) + 0.63 sin[3.92 ha(At) - 2.329] - 0.176 (3.3.3)

Equation (3.3.2) fits the Bobchenko data to within the 1.2-percent difference, which is on the
order of the quoted experimental uncertainty (ref. 30). Although the Bobchenko data represent
a consistent set of measurements for many different targets and probably define well the
A-dependence of the high-energy cross sections, they may nonetheless be in error in absolute
value as suggested by many other independent experiments (refs. 31 and 32).

Letaw et al. (ref. 29) assume the energy dependence for all nuclei to be the same and to be

approximated by

f(E) = 1 - 0.62e -El200 sin(10.9E -°'28) (3.3.4)

where the nucleon kinetic energy is in units of MeV. We observe oscillations according to the
quantum-mechanical calculations of Townsend and Wilson (ref. 31) with phase angle

1.44bE = 1.33In(E) -

but with an A-dependent amplitude given by

2.84
(E < 25 MeV) _ (3.3.5)

(Otherwise) J

f(E) = l(0.3E -022 + 0.76e-E�135)(0.4 + 0.9e -A'/30) sin bE (3.3.6)

The absorption cross section as given by equations (3.3.3), (3.3.5), and (3.3.6) is shown in
comparison with the fit of Letaw et al. and experimental results in figures 15 to 19. As one can
see from the figures, it is difficult to assign a figure of merit to the fit, since great scatter in the
data obscures the result. Generally, above 20 MeV the results are on the order of +10 percent
accurate as estimated from the scatter in the experiments.

Below 20 MeV, the neutron cross sections are represented by numerical data sets at discrete

energies of 1, 3, 5, 10, 14, and 20 MeV as taken from references 27, 32, and 33. Interpolated
values between data points at the available target masses are shown in figures 20 to 25.

Intermediate energy values are found according to

a(At, E) = a(At, Ei)e -a(E-E') (3.3.7)

where Ei and a are taken according to the appropriate subinterval. The cross sections are
assumed to be zero at energies below 0.5 MeV. The absorption cross sections for elements from
lithium to plutonium for energies between 1 and 100 MeV are displayed in figure 26.

3.4. Fragmentation Cross Sections

The local distribution of ions and radicals produced in ionizing radiation events is known to
be an indicator of biological response. The fact that such distributions for high-energy nuclear
radiation are vastly altered by local nuclear-reaction events has been studied in nuclear emulsion
(refs. 34 and 35) and is a regular component in risk assessments in high-energy neutron and
proton radiation fields (refs. 36 and 37). Risk assessments have generally depended on the

8
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results of calculational models of these reactions, since the detailed study of such reactions was

largely inaccessible to experimental study until the advent of high-energy, heavy ion beams.
The first detailed, relativistic, heavy ion beam experiments were performed by the Heckman

group at the Lawrence Berkeley Laboratory (LBL) (refs. 38, 39, and 40) in which beams of
carbon and oxygen were fragmented on a series of targets ranging from hydrogen to lead. The

momentum distribution of the projectile fragments relative to the projectile rest frame was

measured for all the isotopes produced. These results will be analyzed to ascertain relevant

biological factors with their corresponding implications on radiation-risk assessment in high-

energy, nucleonic radiation fields. An ion fragmentation model will be recommended for use in
radiological protection and studies.

Individual nuclear constituents are ejected in the collision of high-energy neutrons and

protons by direct collision (ref. 41). The remaining nuclear structure is left in an excited state

that seeks an equilibrium minimum-energy configuration through particle emission (ref. 42).

This is the basis of Rudstam's study of the systematics of spallation products produced in

such collisions in which he assumes that the resultant isotopes are distributed in a bell-shaped
distribution near the nuclear stability line. The total change in nuclear mass and the dependence

on the incident projectile energy are treated empirically in Rudstam's formalism.

The fragment charge distribution for a given fragment mass A f is given as

f(Zf ) -_ exp(pAf - r]Zf - 8Af + vA2ft)

where tile coefficients show a slight energy and fragment-mass dependence as

(3.4.1)

r : ll.8A) -0"45 (3.4.2)

s = 0.486 (3.4.3)

v = 3.8 × 10 -4 (3.4.4)

20E 0"77 (E < 2100MeV) }P = 0.056 (E _> 2100 MeV)

where E is the nucleon energy. The complete Rudstam cross section is given by

where

a(Af, Z f) = [F1F2PAt 0"3 f(Zf)]/D

(3.4.5)

(3.4.6)

D=l.79[ePA,(l_ 0.3 0.3 O.___t]- -h-7+ (3.4.7)

F1 = 5.18exp(-0.25 + 0.0074At) (3.4.8)

exp(1.73 - 0.0071E) (E < 240 MeV) "]F2 = 1 (E > 240 MeV) _ (3.4.9)

We have applied a simple mass-dependent correction factor to Rudstam's formula as shown

in table 3.4.1 and renormalized his cross sections to the total absorption cross section. Many

corrective factors have been added to Rudstam's formalism by Silberberg, Tsao, et al. (ref. 43).

Estimates have also been made by Guzik (ref. 44) for some of the isotopes produced in

connection with cosmic-ray propagation studies with some attempts at experimental verification
(ref. 45).

From a nuclear-model point of view, isotope production at low energy results from the

formation of a compound nuclear state that decays through particle emission. At higher
energies, the direct ejection of particles from the nucleus becomes important, and intranuclear

9



cascadesrepresentedassequencesoftwobodyscatteringswithinthenucleuswithPauliblocking
aretheusualmeansof evaluation(refs.46and47). Subsequentto the cascade,the residual
nucleusis assumedto be in thermalequilibriumandseeksto minimizeits internalenergy
throughparticleemission(ref.46).

Themeasurementof isotope-productioncrosssectionsat protonacceleratorsdoesnotallow
thedirectobservationofthefragmentproducts.Customarymeasurementsused"_or/_ counting

techniques to identify the isotopes produced. Stable and short-lived isotopes produced in the
reactions were either not observed or their mlmber was greatly distorted by loss through decay.

This is particularly true for light-mass targets such as those that are important to biological

health considerations. Consequently, the fragmentation of carbon and oxygen nuclei by protons

remained shrouded in experimental obscurity until the advent of heavy ion accelerators.

One of the earliest experiments performed at the LBL Bevatron, when the ions of carbon and

oxygen could be accelerated to relativistic energies, used detectors able to measure the energy

and charge of an ion beam in conjunction with a bending magnet for momentum analysis

(ref. 38). In this way, the density in phase space was measured for each isotope produced in

collision with a fixed target.

Ttte isobar cross sections (aLBL) measured by Lindstrom et al. (ref. 40) for 2.1A GeV oxygen

fragmentation on hydrogen targets are given in table 3.4.2 in comparison with the results of

Bertini (ref. 47), Rudstam (ref. 42), and Silberberg, Tsao, et al. (ref. 43). Note that the
Rudstam results contain the correction factors in table 3.4.1 and are renormalized as described

above.

The oxygen-fragmentation cross sections as represented by three parametric forms are

shown in figures 27 to 31 in comparison with the Bertini results and various experiments.

Tile baryon-15 isobaric cross sections in figure 27 show that experiments favor the curve

of Silberberg, Tsao, et al. Although the Bertini model provides an overestimate, the other

parametric curves provide improved estimates compared with the Bertini code. The baryon-14

isobaric experimental cross sections are in reasonable agreement with the three parametric
curves as well as with the Bertini model as seen in figure 28. Again, the experiments show no

(:lear advantage of one parametric curve over another for the baryon-13 cross section as seen in

figure 29, although the Bertini results appear somewhat low. We show experimental results for
baryon numbers between 9 and 13 of Lindstrom et al. in table 3.4.2. Clearly, the equally good

agreement for the Rudstam parameterization and the Silberberg, Tsao, et al. parameterization

is obtained by baryon numbers 12, 11, and 10. The Bertini cross section is far too low to

represent the cross section for baryon-ll. The baryon-9 cross sections are shown in figure 30.

(The results of Yiou are reported in ref. 45.) The Silberberg, Tsao, et al. parameterization

is too high by a factor of 2 or more. The baryon-7 cross sections are shown in figure 31. At

energies below 300 MeV, the baryon-7 results of Silberberg, Tsao, et al. are favored.

The measurements of Lindstrom et al. (ref. 40) for relativistic carbon beams are shown

in comparison with the results from Rudstam (ref. 42) and Silberberg, Tsao, et al. (ref. 43)
in table 3.4.3 for two beam energies. The good agreement with the results of Silberberg,

Tsao, et al. is no surprise, since their parameterization was fit to these experimental data sets.
Note, however, that the Silberberg, Tsao, et al. cross section for mass 8 fragments needs to be

suppressed.

3.5. Differential Nuclear Cross Sections

3.5.1. Nucleon-nucleon spectrum. The nucleon-nucleon differential cross sections are

represented (ref. 48) by

(315.1)

where

B = 2mc2b/lO 6 (3.5.2)
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In the aboveequation,mc 2 is the nucleon rest energy (938 MeV) and b is the usual slope

parameter, given by (in units of GeV -2)

b={ 3+14e-E'/200 (For pp) } (3.5.3)3.5 + 30e -E'/20° (For np)

where E _ is the initial nucleon energy in the rest frame of the target. The differential

spectrum is defined (nonrelativistically) over the energy interval 0 _< E < E t. Note that

the expression (3.5.1) reduces to the usual result for low-energy scattering:

f(E, E') _ 1/E' (3.5.4)

The forward-to-backward scattering ratio is required for neutron scattering and is given by

(ref. 46)

FB(E' ) = 0.12 - 0.015E' + 0.41/[1. L + e4(E'-1"2)] (3.5.5)

where E' in equation (3.5.5) is the laboratory energy (in GeV) before collision.

The differential cross sections are normalized such that

da = a(E')f(E, E') (3.5.6)

where a(E p) is the "appropriate" nucleon-nucleon total cross section. Obviously, we have

neglected the inelastic processes that must yet be included so that a(E I) in equation (3.5.6)

is set equal to the total cross section to ensure particle conservation. The center of the mass

angular distributions 0cm is related to the energy change in the laboratory system by

da E Ida
- (3.5.7)

df_ 4_r dE

(where fl denotes a solid angle) and is compared with the compilation of experimental data
(ref. 49) in figures 32 and 33. These comparisons indicate that the present functions are
reasonable.

3.5.2. Nucleon-nucleus spectrum. The nucleon-nucleus differential cross section in

Chew's form of the impulse approximation (note that this is just the Born term of the optical

model in ref. 50) is given by

do" _ 2bq2
de---_ -- ce IFA(q2)I 2

ee_2bq_ e_2a2 q2/3 (3.5.8)

where b is the slope parameter of equation (3.5.2) averaged among nuclear constituents, q is

the magnitude of momentum transfer, and a is the nuclear root-mean-square (rms) radius. The

nuclear rms radius (ref. 50) in terms of the rms charge radius (in fermi) is given as

)'"a = ac2 - 0.64 (3.5.9)
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wherethermschargeradius(in fermi)is

0.84 (At = 1)

2.17 (At = 2)

1.78 (At = 3)
a c

1.63 (At = 4)

2.4 (6 < At <_ 14)

0.82A_/3 + 0.58 (At > 16)

(3.5.10)

The nuclear form factor is the Fourier transform of the nuclear matter distribution. Note that

tile above equation assumes that the nuclear-matter distribution is a Gaussian function. Such

an approximation is reasonable for the light-mass nuclei but is less valid for At >> 20.

The energy transferred to the nucleus Et is restricted by kinematics to

O<_Et < (1-a)E' (3.5.11)

where
a = (At 1) 2 / (At + 1) 2

The energy-transfer spectrum is given as

(3.5.12)

4Atmc2(B+ _)exp[-4Atmc2(B+ _)Et]
f(Et, E') = (3.5.13)

a 2 _l]

1 - exp [-4Atmc2(1 - a)(B + --5-j,_ l

Similarly, tile nucleon energy after scattering E is restricted to

c_E / _< E < E I (3.5.14)

The nucleon spectrum is given by

a2 _ _l

f(E,E,)=4Atmc2(B+_-)exp[-4Atmc2(B+--3-j(_[ -E)] (3.5.15)
a _ _I1

- exp [-4Atmc2(1 - a)(B + -3-j_, j1

One should note that both equations (3.5.13) and (3.5.15) reduce to the usual isotropic

scattering result at low incident energy. The differential spectrum is normalized as
= :

das _ as(E') f(E, E') (3.5.16)
dE

where C_s(E _) is the total scattering cross section obtained from equation (3.2.16).

The results of equation (3.5.16) are compared with experiment (refs. 51 and 52) in figures 34

to 37 (where Olab is the scattering angle !nthe laboratory). The comparison is rather good
at the small angles when considering the simplicity of the present results. Also, shown in the

figures are prior results from reference 2 showing considerable improvement in representing
forward-scattered neutrons over the prior results. Much of the present discrepancy near

forward scattering is due to errors in as(E) to which the present spectra are normalized in

equation (3.5.16). At broader angles, additional differences are due to the neglect of higher-
order corrections to the impulse term.

3.5.3. Nucleon nonelastic spectrum. The nonelastic differential cross sections (the

inelastic process in which the nucleus is raised to an excited level that is ignored) use the results

12
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of Bertini's MECC-7 program (ref. 47). The nucleon multiplicities are given in tables 3.5.1 and
3.5.2. We have required the multiplicities to be monotonic in energy, and thus the values in

parentheses, which were obtained by scaling from lower and higher energies, are correct values
and are used in the calculations. The results below 400 MeV were taken from Alsmiller et al.

(ref. 53), and the results for carbon, calcium, bromine, cesium, and holmium above 400 MeV

are obtained by interpolation. The nonelastic spectra are represented as

3 e-E1/_i
.f(E, E') = y_ Ni

i=1 ai 1 -- e--:-_/'_i +

NQ
(3.5.17)

The first term of the summation represents the evaporation peak so that N1 (the number of

evaporation nucleons) is taken from table 3.5.1 and the spectral parameter al (in GeV) is taken

from Ranft (ref. 54) as

(0.019 + 0.0017E')(1 - 0.001At) (E' < 5GeV) ]_lp = 0.027(1 - 0.001At) (E' > 5 GeV) ; (3.5.18)

(0.017+0.0017E')(1-0.001At) (E'<5GeV)}aln = 0.023(1 - 0.001At) (E' > 5 GeV) (3.5.19)

The second term is taken from Ranft (ref. 54) to represent the low-energy cascade particles as

0.0035v_ (E' < 0.1 GeV) }
n2p = 0.007vF_[0.5 + (1 + logl0 E') 2] (0.1 < E' < 5 GeV) (3.5.20)

0.0245x/-_ (E' > 5 GeV)

0.0042V"_ (E' <_ 0.1 GeV) }
n2n = 0.007v/-_[0.6 + 1.3(1 + log10 E') 2] (0.1 < E' < 5 GeV)

0.032v/-_ - (E' > 5 GeV)

(3.5.21)

with the corresponding spectral parameters

(0.11 + 0.01E')(1 - 0.001At) (E' < 5 GeV)_2p ---- 0.16(1 - 0.001At) (E _ >_ 5 GeV)
(3.5.22a)

(0.1 + 0.01E')(1 - 0.001At) (E' < 5 GeV) } (3.5.22b)t_2n ----- 0.15(1 - 0.001At) (E _ >_ 5 GeV)

The third term in the summation is the balance of cascade particles after the inclusion of the

quasi-elastic contribution.

The quasi-elastic contribution is estimated by including the nuclear attenuation following

the quasi-elastic event. The proton quasi-elastic cross section is

ffQ,pp -- ZtCrpp A- (At - Zt)crnp

JaQ,pn = (At - Zt)o'np
(3.5.23)
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andsinlilarlyfor neutrons,

_rQ,nn= (At - Zt)_rnn + Ztanp I

IO'Q,np = Ztonp

The corresponding multiplicities are taken as

(3.5.24)

.-0.05vGT_ _ / (3.5.25)

g

where the exponential factor accounts for the attenuation of the quasi-elastic particles before
they escape the nucleus. The balance of the cascade particles is contained in Na as

N3= Nc- N2- Ne (3.5.26)

with an assumed spectral coefficient given by

c_3 = c_2/0.7 (3.5.27)

Results of the present formalism are shown in figures 38 to 51 in comparison with the

calculations of Bertini et al. (ref. 46). Some further improvements in this parameterization
need to be made.

3.5.4. Light'fragment spectrum. The light-fragment yields per event are given in

table 3.5.3 as obtained from Bertini's MECC-7 calculations (ref. 47). These results are

extrapolated and interpolated in energy and mass number. The corresponding mean energies
are given in table 3.5.4. The mean energies are used in Ranft's formula for nucleons and are

similarly used for the light ions.

3.5.5. Heavy-fragment spectrum. Following tile direct ejection of nucleons in nuclear

collision, the nucleus is left in a highly excited state that decays through particle emission.

From a sudden approximation point of view, as proposed by Serber (ref. 41), the momentum

distribution of the decay particles is governed by the fermi distribution prior to collision. The

collective momentum of decay products and nuclear fragments is thus derived on the basis of

combinatorial rules on the random ways in which a given fragment mass can be formed from

the nucleon distributions prior to collision (refs. 55 and 56). The formulation of Goldhaber
(ref. 56) is physically meaningflfl and simplistic. The momentum distribution is Gaussian in

momentum space with a momentum width parameter given by

ap = ao JAr(At - AI)/(At - 1)] 1/2 (3.5.28)

where cr0 is the usual mean fermi momentum of the struck nucleus. However, the a0 of nuclear

fragmentation is found to be about 25 percent smaller than that observed in electron scattering
exper]ments_re--Z. 3_1).- The mean fermi momentum is a Slowly varying function of nuclear mass.

SIi_it modification of Goldhaber's result is found to adequately represent the experimental

results oir Gre_ret al. (ref. 39) given by

Crp = 0.8b [45A/20(A t - 1)] 1/2 (3.5.29)

where tile parameters b and 5A are given, respectively, by

b= min (112A_/2,260) (3.5.30)
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and

{ 0.45 (At=Af) } (3.5.31)6A = At - AI (Otherwise)

A comparison of formulas (3.5.29) to (3.5.31) with experiments and tile parameterization of

Greiner et al. (ref. 39) is given in table 3.5.5. Clearly, the present formulas are quite accurate.

The spectral distributions of the nuclear fragments in the rest frame of the struck nucleus

prior to collision are given by

derI _ o'd E 1/2 exp(-E/2Eo) (3.5.32)
dE (2_rE03)1/2

where a I is the fragmentation cross section and the energy parameter is

E 0 = 332/2Ai (3.5.33)

The average energies E of various fragments obtained by equations (3.5.29) to (3.5.33) are

compared with results of the Bertini model in table 3.5.6. Generally, the average energies

predicted by the Bertini model are reasonably accurate, although some specific isotopes differ

by a factor of 2 or more.

3.5.6. Energy-transfer cross section. The energy-loss spectrum Cj(x, f_, E) of an ion
fragment j (ref. 57) may be written as

m ,_3/2

Cj(x, f_,E)_ Aj _j(x)/E_ _2-_2P) 2v/_E_mE,/a_dE '
(3.5.34)

where Aj is the fragment mass number, Cj(x) is the fragment source, and E- r is related to the
distance to the boundary along the direction f_ as given elsewhere (ref. 57). For distances far

from the boundary, one may take E. r = oc. The cumulative energy-loss spectrum far from the

boundary (E_, = oc) is

/?Dj(x,E) = 47r _j(x,a,E')dE' (3.5.35)

from which the distribution in linear energy transfer (LET) of energy deposit can be found.

The total energy absorbed is given by

D(x) = _Dj(x,0)

d

,._ ___ Ejajp¢ (3.5.36)

J

where Ej is the average energy of the fragment j, aj is the fragmentation cross section,
p is the target density, and ¢ is the effective nucleon flux initiating the fragmentation events.

The energy-transfer cross section of the various fragment components is Ejaj and is shown
in table 3.5.7 for the Rudstam parameterization (present results), Bertini data (ref. 46), and

experiments of the Heckman group (refs. 39 and 40) for comparison. Equations (3.5.34) to

(3.5.36) also provide a basis for resolving the energy-transfer cross section into its various LET

components. The LET components of equation (3.5.35) are shown in figure 52 for p = ¢ = 1
for all contributions with a fragment charge greater than 1. The two curves shown in the figure

are for the Bertini data and the experiments of the Heckman group. Results obtained using

our modified Rudstam formalism and the parameterized momentum distributions are virtually

indistinguishable from the curve based on the LBL experiments. It is clear from the results
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shownin figure52that estimatesof exposurefromheavyion recoilnucleiin tissuebasedon
Bertinicross sections are generally low.

4. Methods of Solution

In an earlier paper (ref. 3), we proposed the use of a perturbation theory to develop

a numerical method for solving the one-dimensional charged-particle transport problem.

Although the resulting algorithm was greatly simplified compared with Monte Carlo algorithms,

it still suffered from the need to manipulate large amounts of numerical data. In the present

section, we show how the integral operators of that earlier work (ref. 3) may be numerically
evaluated to eliminate the need to store and manipulate large amounts of numerical data, and

at the same time we develop an algorithm that maintains a close relation to the physical field

quantities. The resultant numerical solutions are compared with results obtained by analytical
solutions for realistic interactions.

4.1. Energy-Independent Proton Model

The Boltzmann equation for proton transport in the straight ahead approximation is given

as

[fix O0--ES(E)+a] ¢(x'E)= /? f(E'Et)¢(x'E')dEt (4.1.1)

where S(E) is the proton stopping power, a is the macroscopic interaction cross section which
we presently take as energy independent, and f(E,E') is the production secondary-particle

spectrum. Using the definitions

9_0 E
r = dE'/S(E')

¢(x, r) = S(E) ¢(x, E)

(4.1.2)

(4.1.3)

and

}(r, r') = S(E) f(E, E')

allows equation (4.1.1) to be rewritten as

(4.1.4)

fox ff¢(x, r) =e-aX ¢(O,r +x)+ dze -az dr']f(r + z,r')¢(x-z,r')
+z

(4.1.5)

where the boundary condition is

¢(0, _) = S(E) ¢(0, E) (4.1.6)

A numerical algorithm for equation (4.1.5) is found by noting that

_0 h _r e¢'
¢(x+h,r)=e-ah¢(x,r+h)+ dze -az dr'-f(r+z,r'z)¢(x+h-z,r' +z) (4.1.7)

which can be simplified by using

¢(x + h - z, r) _, e -a(h-z) ¢(x, r + h - z) + 0(h) (4.1.8)

which yields

¢(x+h,r)_e-ah¢(x,r+h)+e -ah hdz °Cdr'_f(r+z,r'+z)¢(x,r'+h) (4.1.9)
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with the order of h2 where h is the step size. Equation (4.1.9) is accurate for distances such

that ah << 1 and may be used to relate the spectrum at some point x to the spectrum at

x + h. Therefore, one may begin at the boundary (x = 0) and propagate the solution to any

arbitrary interior point using equation (4.1.9).

In the event that the boundary has a discrete spectrum such as

¢(0, E) = 5(E - E0) (4.1.10)

then

¢(0, r) = 5(r - ro) (4.1.11)

When discrete spectra are present at the boundary, tile solution contains both singular and

continuous components which we label Cs and ¢c, respectively. Tile corresponding singular
term in the solution is then

Cs(X,r) = e-aX 6(r + x - to) (4.1.12)

whereas the continuous term satisfies

¢c(x + h, r) = _-_h Co(x, r + h)

+ dze -az dr'f(r+z,/+z)[¢s(x+h-z, +z)

+ ¢c(x + h - z,/+ z) ] (4.1.13)

The first term under the integral may be evaluated using equation (4.1.12) to obtain

¢c(X + h, r) e -ah ¢c(X, r + h) + e -a(x+h) rjoh= dz ](r + z, r0 - x - h + z)

/0+ dze -az dr'f(r + z,r t + z) ¢c(X + h - z,r t + z) (4.1.14)

The solution over small values of (h - z) may be approximated as

¢c(x + h - z, r) _ e-"(h-z) ¢_(_, r + h - z) + 0(h - z) (4.1.15)

for which (see the appendix)

where

F [

¢c(X + h,r) _ e -ah [¢c(x,r + h)+e-ax-F_r,h,

+ _-_h d/T(r, h,/) ¢_(_, r' + h) (4.1.16)

hF(_, h,/) = dz _(_ + z, r')

= F_[_(r+ h), E'] - Fc(E, E') (4.1.17)

where e(r) is the energy for range r and

_0 EFc(E, E') = f(E, E') dE (4.1.18)
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whichis thecumulativesecondary-particlespectrum.Notethat equation(4.1.16)requiresonly
onenumericalintegrationperstepin x.

4.1.1. Discrete spectrum.

section 3.5) by

Nucleon-nucleon scattering can be well-approximated (see

f (E, E') _- ce -a(E'-E) (4.1.19)

where c/a = a. This spectrum is related to the quasi-elastic spectrum of nucleon-nucleus

reactions. Similar to this spectrum is

f(r, r;) ---- ce -a(r'-r) (4.1.20)

As a model problem, the spectrum of equation (4.1.20) is realistic and can be solved using

perturbation theory. The first term is the uncollided beam term

¢0(x,r) = e- x (r0 - r - x) (4.1.21)

Tile first-generation term is

_1 (x, r) = xe-aXce -a(r° -r-x) (4.1.22)

and the higher-order terms are

1 c n

_)n(X, r) ---- It_-_xne-ax (n -- 1)i (r0 -- r -- x)n-le -a(r° -r-x) (4.1.23)

This problem is solved numerically using equation (4.1.16) and is compared with the analytic

solution in table 4.1.1. The incident beam is for 500 MeV protons on a water shield with

(r = 0.01 cm2/g and a _ 0.0123cm2/g:

As seen from the table, solutions with discrete spectra are limited in accuracy to 5 percent,

independent of the depth of penetration. This error arises from the energy interpolation formula

as the spectrum is highly discontinuous. Special interpolation methods could be developed to

reduce this error greatly.

4.1.2. Continuous spectrum. For this test, a spectrum similar to a solar proton event
is taken as

¢(0, r) = e -;3r (4.1.24)

The leading term in the perturbation theory is

¢0(x, r) = e-_Xe -_(r+x) (4.1.25)

with successive collision terms given by

1 c

-- × --¢n-l(X,r) (4.1.26)
= + Z)

This problem is solved numerically and compared with the analytic result in table 4.1.2. It
is seen from the table that the agreement for the two solutions in this case is generally within

±1 percent. Clearly, high-quality numerical solutions are available for continuous spectra at

the boundary,

The algorithm developed herein provides adequate solutions to proton beam problems
with discrete spectral components and highly accurate solutions for typical space applications

involving continuous spectra. The computation times for each of these test problems were less
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than several minutes on a CYBER mainframe, thus offering a very favorable comparison with

Monte Carlo or previous methods based on the perturbation theory (ref. 3).

4.2. Coupled Baryon Transport Methods

The coupled baryon transport equations are of the form

1 /0-_x -Vj S(E)+aj(E) Cj(x,E)= __, fjk(E,E')¢k(x,E')dE'
k

(4.2.1)

where vj is the range scaling parameter, S(E) is the proton stopping power, a(E) is the total

cross section, Cj(x,E) is the differential flux spectrum of type j baryons, and fjk(E, E l) is
a differential energy cross section for redistribution of particle type and energy. Utilizing the
definitions

0Er = dE'/S(E')

Cj (x, r) = S(E) Cj (x, E)

(4.2.2)

(4.2.3)

and

?jk(r, _') = S(E) Ijk(E, E') (4.2.4)

allows equation (4.2.1) to be rewritten as

]--vj-_r q-aj(r) Cj(x,r) = fjk(r,r')¢k(x,r')dr'
(4.2.5)

which may be rewritten (refs. 3 and 4) as

Cj(x, r) = e-;,(r'x)¢j(0, r + vyx)

+ _k _oX_°Ce-(J(r'z)}jk(r +vjz, r')¢k(x-t,r')drtdz
(4.2.6)

where the exponential is the integrating factor

_0 tq (r, t) = aj (r + vjt') dt'

If the interactions are such that

?jk(r, r') = _jk_(r - r') (4.2.7)

where g denotes the appropriate spectral function, then the solutions to equation (4.2.5) are of
the form

Cj(x,r) = X(x,r + vjx) (4.2.8)

To demonstrate how remarkable equation (4.2.8) is, we note that if X(x, r) is the solution to the

neutron transport equation (_'n = 0), then X(x, r + _,pX) is the solution to the proton transport

problem independent of the functional form chosen for the stopping power.

Rather simple numerical procedures follow from equation (4.2.6). Noting that the first-order

nature of equation (4.2.1) allows Cj(x, r) to be taken as a boundary condition for propagation
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to largerx, one may approximate equation (4.2.6) as

Cj(x -t- h,r) =- ¢-_(r'h)¢j(x,r + vjh)

+ _ _-c, (r,_)jj k(r + v_'z,r') ¢(x + h - z, r') dz dr' (4.2.9)
k

which may be used to develop a numerical stepping procedure. Equation (4.2.9) has provided

the basis for a number of new transport codes for baryons of mass number greater than or
equal to 1 (refs. 2, 4, and 5). These codes are now being extended to couple with the meson

fields and to the negative baryon number fields.

If h is sufficiently small such that

crj(r') h << 1 (4.2.10)

then, according to perturbation theory (ref. 3),

Ck(x + h - z,r') _ e-_(r'h-Z)¢k[x,r' + uk(h - z)] (4.2.11)

which may be used to approximate the above integral of equation (4.2.9).

For many cases of practical interest (e.g., accelerator studies), monoenergetic particle beams
are used, and separation of the singular terms from tile solution becomes convenient. The initial

beam of type J particles of energy E 0 (where r 0 = R(Eo) ) is taken as

Cj(O, r) = 5jjS(r 0 - r) (4.2.12)

and the solution is written as

Cj(x, r) -- _jo(x, r) -t- ¢j(x, r)

The corresponding singular terms are

CkO(X, r) ----e -¢_ (r'x)5(r 0 -- r -- pk x) _kj

The regular terms of equation (4.2.9) for k = p may be written as

Cp(x + h, r) = eC,(_,h)¢p(z,r + h)

+ dze-_,(_'z)_. ÷_pj(r+z,_')[¢_0(x+h-z,r')
2

-t- Cj(X + h - z, rt)] dr' (4.2.15)

and the regular terms for k = n are

Cn(X + h, r) = e -_° (r) h Cn(x, r)

/0 /?
./

+ Cj(x + h - z,r')] dr' (4.2.16)

Tiie Slnguiar contributions under the integrals of equations (4.2.15) and (4.2.16) can be

evaluated with equation (4.2.14), and the approximations in equations (4.2.10) and (4.2.11)

2O

(4.2.13)

(4.2.14)
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canbeappliedto find

Cp(X+ h, r) = exp[-ap(r)h] Cp(X, r + h)

+exp {-[ap(r) + Crp(r_)] h } -fipp(h, r, rto)5pj exp[-_p(r_o,X)]

+exp {-[ap(r)+ an(ro)lh}-Fpn(h,r, ro)5nj exp[-ern(r0) x]

+ fr°Cexp { - [ap(r)+ap (rt+ h)J h}F--pp (h,r,r'+ h)¢p(x,r'+h)dr'

(4.2.17)
and

Cn(x + h, r) : exp[-ern(r)h] Cn(x, r)

oc ¢ h
+h fr exp {-[fin(r)+ ap(r')] h} fnp(r,r')¢p (x,r +3)dr'

+h fr °c exp {-[an(r)+ (Tn(rl)] h } fnn(r, r')Cnex, r')dr'

where r D = r0 - x - _ and T is related to the cumulative spectrum F as given by

-fiij(h,r,r') = fij(r + z, rt)dz

=-- Fij(r + h,r') - Fij(r,r' )

with

r)Fij(r , r') = fij(E, Et) dE

(4.2.18)

(4.2.19)

(4.2.20)

e(r) is the energy associated with residual range r, and E I = e(r_). Equations (4.2.17) and

(4.2.18) are evaluated by establishing an x-grid at which Cj(Xrn, r) is evaluated where h is the

distance between each successive evaluation. The integral over r _ is accomplished by establishing

an r-grid (and the corresponding E-grid) and using

fr o¢g(rn, rt)¢j(Xm, W) dr' Egn(rn,_t) rt+' Cj(Xm, r) dr' (4.2.21)
n _-n t

where eg = (rg + rt+l)/2 and the series terminates at the highest g-value in the r-grid.

Thcre is a spatially dependent discontinuity in the proton flux spectrum which requires right-

and left-hand interpolation and integration. These discontinuities have been treated in the
computational procedures.
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4.3. Neutron Source

The neutron transport equation in three dimensions is

[f_ • V + an(E)] Cn(x, f_, E) = E./E _° fnJ (E' E', Ft, f_')¢j(x, f_', E') df_' dE'
3

(4.3.1)

Although the straight ahead approximation is adequate for most proton calculations, the
neutron fields are more strongly affected by nonforward scattering components, particularly

the low-energy neutrons. The reason is that the lower-energy neutrons have a greater range
than the lower-energy protons because of the electric charge difference. Thus, a first-order
correction to the straight ahead approximation may be applied by substituting the proton
coupling in equation (4.3.1) by the straight ahead solution for Cp(X, f_, E) so that

_n(x, f_, E) = fnp(E, E', f_, f_x) Cp(x, E') dE' (4.3.2)

The corresponding neutron transport equation is

/E': fnn( E' E', fl, _') Cn(x, _', E') dfl' dE' +_n(X, f_, E) (4.3.3)V+an(E)] ¢,_(x, n, E)

The neutron source integral is treated in a fashion similar to that of equation (4.2.21).

4.4. Target-Fragment Secondary Flux

The target fragmentations produced in nuclear collision with the nucleon field must now be
treated. The spectral parameters of the composite fragments are relatively independent of the
projectile charge, energy, or direction. This leads to some simplifying assumptions so that

1 E-y

Cy(x,f_,E)- Sj-(E)(J(X) /E fj(E')dE' (4.4.1)

E'_ = R-fl[Rj(E) + d(f_)] (4.4.2)

where d(fl) is the distance from the boundary (ref. 57). The source of ions of type j is evaluated
as

z/0(j(x) = crji(E' ) ¢i(x, n', E') da' dE' (4.4.3)
l

where crji(E p) represents the fragmentation cross sections. The fj(E _) represents the spectral
contributions averaged over all the target atomic constituents. In the present code, the distance
to the boundary is assumed to be large. One could treat not only the boundary effects but the
interface effects as well.

5, Results

As an initial validation of the present code, comparisons are made both with prior
calculations using Monte Carlo methods and with experimental data. Fully three-dimensional
Monte Carlo calculations have been made with the Bertini code as the nuclear cross section set

augmented with low-energy neutron data. (See refs. 58 and 59 for a detailed discussion.) Energy
absorption in a tissue slab for normally incident neutrons of energies 0.5, 2, and 10 MeV is shown
in table 5.1. Also shown are the results of the present code. The results appear remarkably good

wh-e-n -considering- (he crudeness of tl_e straight ahead api)rox_mation for lowzenergy neutrofis
and the limitations on the present data base. Results for higher-energy neutrons are shown

in figures 53 to 57. In each case, reasonable agreement with the results of Zerby and Kinney
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(ref. 59) are obtained. Similar results are found for energetic protons as shown in figures 58

to 61. The present data base changes the results in figures 53 to 61 by only a few percent

when compared with the results in reference 2. In the present calculation, the first-generation

proton spectrum is discontinuous for monoenergetic beams and is best handled by taking many

energy points in the spectrum. However, the calculation time then becomes excessive. The

present results were calculated using only 30 energy points. This process is adequate for space
radiation, as shown in reference 60, but it is marginal for the present monoenergetic results.

The use of numerical benchmark problems will allow us to understand the numerical procedures

better. Such a benchmark has already provided some insight (refs. 60 to 62).

The code has been used to calculate the dose behind various shields for typical space

radiation. Three major solar-particle events of solar cycles 19 and 20 are represented in

figure 62. The spectra as given in reference 63 have been used. The modification of the

solar-event spectra at various depths in a lunar soil model is shown in figures 63 to 65. The

importance of the buildup of secondary neutrons is clearly apparent in the February 1956 and
November 1960 events and does not appear at all in the August 1972 event. The neutrons of the

February 1956 event reach a stationary value between 25 and 100 g/cm 2, as has been observed

in our earlier calculations (ref. 37). The resulting dose within a 5-cm sphere of tissue-equivalent
material is shown as a function of soil thickness in figure 66. The dose reduces only slowly for

increasing the thickness beyond 20 cm.
Galactic protons and their secondary neutron spectra behind varying thicknesses of alu-

minum are shown in figures 67 and 68. The incident proton spectrum is that for a solar

maximum according to the model of Adams et al. (ref. 64). It is clear that the neutron flux

approaches a maximum near 50 g/cm 2 which is similar to the lunar soil results. Results for pen-

etration of the martian atmosphere are indicated in figure 69. The potential use of polyethylene

for controlling the neutron flux levels is indicated in figure 70. There are important geometric

factors to be applied to all these results for which some detail is given elsewhere (ref. 65).

6. Concluding Remarks

The emphasis of the present code is on high-energy baryon transport, but such a code must

adequately represent the low-energy neutrons in a reasonable way. It is seen from the present

results that this representation has been accomplished in the present code. The calculation of

100 to 400 MeV neutrons and protons on tissue is in reasonable agreement with a more complete

Monte Carlo code. The primary advantage of the present code is computer efficiency while

maintaining adequate accuracy. Future work will concentrate on improving the representation
of the quasi-elastic peak, the low-energy neutron transport algorithm, and adding the effects

of meson production to improve the comparisons further.

NASA Langley Research Center
Hampton, VA 23665-5225
December 21, 1988
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7. Appendix

Numerical Procedures

In this appendix we consider the question of the appropriate
evaluating equation (4.1.5). The equation being solved is

numerical procedure for

f0x /r¢(x, T) = c-_ ¢(0, _ + x) + dz e-_z dT' _(_ + z, r') ¢(x -- z, r')
+z

(A1)

which may be solved using perturbation theory for a monoenergetic beam as

¢0(x, T) = _-ox 6(T + _: - T0)

/o-¢1(_,T) = _-°x dz_(r +z, _o -x+z)

(A2)

(A3)

with higher-order terms being obtained by repeated Substitution into equation (A1). Note that

if f(r, r I) is a flmction only of (r - r_), then

¢I(X,T) = Xc--aX?(T, T0 --X) (A4)

Equation (A4) would hold for the quasi-elastic peak distribution for which

?(r, r') _ ce -a(r'-r) (A5)

where a and c are constants. Equation (A4) does not follow for the quasi-elastic recoil particles
for which

f(r, r') _ c'e -at (A6)

It follows that equation (A3) can be Written as

el(X, r) -_ e-aX[T(r + x, ro - x - Q) - F(r,r 0 - x - Q)] (A7)

where the choice for Q is not entirely clear but in some way represents the average z dependence

of equation (A3) on the interval 0 to x. If c _ and (_ are strictly constants, then equation (A7)

is independent of the choice of Q. In general, the spectral function f(r,r _) contains terms

like those in equations (A5) and (A6) simultaneously so that whatever numerical solution is

implemented, the character of both solutions (A4) and (AT) must be retained.

The numerical solution to equation (A1) is rendered as

Cs(x + h, r) = e -ah Cs(x, r + h) (A8)

for the singular part and as

+h)+ +z, o-

+ + z, r I + h) dr I (A9)

for the continuous spectral components. The first two terms of equation (A9) correspond to

_p(x, r) of the perturbation theory, and the requirement

[ /oh ]¢l(x+h,r)=e -eh Cs(X,r + h) + dzF(T--z, To--z--Q) e -ax (A10)
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must be met by any numerical procedure. One may show equation (A10) to be an identity for
Q = h - z. We now inquire as to a suitable choice for Q. Clearly, computational accuracy of
equation (A10) depends entirely on exactness to which the integral in (A10) is evaluated.

We first note that the integral in equation (A10) for the quasi-elastic peak has the value

h-F(r + z,r 0 - x - h- z) dz = hcexp[-a(r 0 - x- h- r)] (All)

for the exact value of Q. Assuming Q to be some fixed value results in

j_oh-fi(r + z, r 0 -- x -- Q) dz -- c exp[_a(r 0 _ x - h - r)][c aQ - ca(Q-h)]
C_

[ 1 1= hcexp[-a(ro - x - h - r)] 1 + aQ - -_ah + O(h 2) (A12)

Clearly, the error of equation (A12) is minimized by taking Q = h/2. Note that this value of Q
would also be chosen on intuition, since it represents the values at the midpoint of the interval.

The above question was investigated using the numerical calculations and an analytic
solution for the quasi-elastic peak form of the secondary spectrum. The analytic solution
is graphically presented in figure A1. The numerical solutions for Q = 0 and Q = h are shown,
respectively, in figures A2 and A3. The corresponding errors are shown in figures A4 and A5.
In each case, the errors mainly occur near the upper energy limit of the spectrum at each

depth x. The Q = 0 solution is a slight overestimate of the flux at the highest energies and
Q = h is a slight underestimate. In accordance with the result of equation (A12), we expect
the errors of figures A4 and A5 to nearly cancel if the value Q = h/2 is used. The solution for
Q = h/2 is shown in figure A6 with the corresponding errors in figures A7 and AS. Clearly,
an adequate approximation is obtained using Q = h/2, although it is clear from the present
analysis that even greater improvements can be made.
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Table 3.4.1. Present Correction Factors for Rudstam's Formula

AA

1

2

3

4

5

6
7

8

9

10

Correction factor for--

12C

1.3

.5

.3

.1

1.0

.35

160

1.5

1.0

1.0

1.0

1.5

.5

.5

.1

2.5

1.0

Table 3.4.2. Comparison of Oxygen Fragmentation Cross Sections a of Reference 46

With Experiments of Reference 40 and Parametric Results of References 42 and 43

Fragmentation cross sections, _r, rob, from--

Bertini LBL Rudstam NRL

A F !ref. 46) (ref. 40) (ref. 42) (ref. 43)
16

15

14

13

12
11

10

9

8

7

6

7.0

85.1

39.0

13.9

28.1

5.0

9.1
1.0

.2

1.1

3.8

0.02

61.5

35.4

22.8

34.1

26.4
12.7

5.2

1.23

22.2

13.9

8.7

61.0

32.6

29.7

27.9

31.4

i2.0
7.1

2.1

27.8

18.0

59.4

32.2

17.7

36.0

19.9

ll.0
12.1

14.7

19.4

16.7

Total 193.3 235.5 258.3 239.1
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Table 3.4.3. Comparison of Carbon Fragmentation Cross Sections a Measured in Experiments of
Reference 40 With Two Simple Parameterizations

(a) 12C at 1000A MeV

Fragmentation cross sections, a, mb, from--

LBL Rudstam NRL

A F (ref. 40) (ref. 42) (ref. 43)
12
ll
10

9
8
7
6

0.1
55.3
22.7

5.8
1.4

18.9
12.4

6.7
63.2
28.0
10.0

4.8
21.7
14.7

0
69.0
22.0
15.2
26.0
20.7
16.9

Total 116.6 149.1 169.8

(b) 12C at 2000A MeV

Fragmentation cross sections, a, mb, from--

LBL Rudstam NRL

A F (ref. 40) (ref. 42) (ref. 43)
12
11
10
9
8
7
6

0.09
57.0
22.7

6.20
1.6

20.49
14.8

6.2
60.4
27.8
10.4
5.2

24.4
17.2

0
58.5
20.5
14.2
24.1
19.9
16.7

Total 122.9 151.6 153.9

|
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Table 3.5.1. Number of Evaporation Nucleons Produced in Nuclear Collisions

[Values in parentheses are modified and used in the code]

At = 12:
p---,p
p ---*n
n--_p
Tl---.*rt

At = 16:
p ---, p
p_n
n---_p
n---.*n

At = 27:
p ---, p
p ---+n
n ---*p
rt---._n

At = 40:
p_p
p --+ n
n --* p

At = 65:
p---,p
p ---+n
n---*p
n...._Tl

At = 80:
p---+p
p-----_rt
n_p
n---*n

At = 100:
p---,p

Number of nucleons produced at--

25 MeV

0.51
0.026
0.052

0.43

0.62
0.87
0.12
0.55

0.54

0.37
0.14
0.75

0.50
0.53
0.12

0.89

0.18
1.04
0.03

1.46

0.10
1.29
0.02
1.58

0.03

200 MeV

0.54
0.32

0.30
0.57

0.73
0.36

0.47
0.60

0.99
0.61
0.78

0.76

1.03
1.12
0.74

1.39

0.75
2.33
0.49

2.77

0.60
2.20

0.53
3.19

0.46

400 MeV

0.50

0.35
0.35
0.52

0.71

0.441
0.53
0.59

1.03
0.62

0.82
0.71

1.06
1.24

0.84
1.44

0.91

2.65
0.66
2.90

1.07

3.18
0.79
3.43

1.28

1000 MeV

0.72
0.79
0.73

0.77 (0.71)

0.84

0.11 (0.87)
0.86

0.79

1.36
1.29
1.29

1.34

1.74
2.63
1.60

2.76

2.11
3.97
1.90

4.17

2.2
3.72
1.87

4.07

2.96

2000 MeV

0.75

0.79
0.73

0.71 (0.71)

0.89

0.93 (0.87)
0.86
0.79

1.49

2.03 (1.92)
1.60
1.51

2.32

3.36
2.29
3.25

3.15

4.79
2.98
4.99

3000 MeV

0.84
0.79
0.80

0.73

0.98 (0.93)
0.82 (0.87)

0.89

0.81

1.86

1.52 (1.92)
1.74

1.60

2.93
3.64
2.67

3.54

4.00
5.37
3.61

5.49

3.18
5.07

2.91
5.35

4.56

4.89
6.77
4.53

6.91

5.78
p ----_ n .....

n ---_p .....
rt-"*rt .....

At = 132:
i"

p ---_p .....
p-'+ rt .....

rt----4p .....

n.---._ n .....

At = 164:
p---*p .....
p ---* n .....

Tt --_ p .....

Tt-"_n .....

At = 207:
p---*p .....
p----_n .....

n-----_p .....

_-...+Tt .....

1.53

0.004
1.67

0.01
1.91

0.001
1.96

0.003
2.17
0.003

2.26

0.001
2.29
0.00

2.29

1.97
0.59
3.60

0.61
4.11

0.47
4.73

0.42

5.79
0.28
5.96

0.21
7.22

0.10
7.38

3.72
0.96

3.97

1.03
5.25
0.81

5.59

0.76
7.07
0.58

7.07

0.44

9.24
0.30
9.53

5.46
2.71
5.63

2.68

8.76
2.51
8.93

2.38

12.09
2.30

12.3

2.23
15.3

2.10
15.6

7.04
4.27

7.31

4.51
11.34
4.47

10.6

4.68
15.7
4.68

14.6

5.19
17.81
4.88

18.2

8.17
5.44
8.33

6.32

12.31
5.98

12.42

6.86
16.45

6.52
16.51

7.39
20.6

7.05
20.6
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Table3.5.2.Numberof Cascade Nucleons Produced in Nuclear Collisions

At = 12:
p--,p
p--* rt

n--*p
n---)l_

At = 16:
p--,p
p -* n

n--*p
rt--+n

At = 27:
p---,p
p --* n
n--*p

0.25 MeV

0.58
0.41
0.42

0.56

0.56
0.38

0.38
0.54

0.46
0.34
0.32

Number of nucleons produced at--

200 MeV 400 MeV 1000 MeV 2000 MeV

1.43
0.86

0.90
1.42

1.63
0.93
0.92

1.69

1.72
0.98

0.96
1.70

1.67
1.16
1.01

1.95
1.42

1.43
1.95

2.05
1.47

1.49
2.05

2.29
1.86
1.69

2.15
1.66

1.65
2.27

2.39
1.86

1.85
2.52

2.86
2.54
2.28

1.41
0.90

0.91
1.43

1.38
0.97
0.93

3000 MeV

2.48
2.08

1.91
2.57

2.60
2.19

2.01
2.70

3.19
3.25
2.71

rt --4 T/ .....

At = 40:
p---,p .....
p_p .....
n_p .....
rt---+n .....

At = 65:
p_p .....

p-"-+ Tt .....

ll "_ p .....

Tt--"-+TI .....

At = 80:
p---,p .....
p-.-..* _ .....

n ----_ p .....

Tt---_rt .....

At = 10():
p---_p .....
p---'+ rt .....

n_p .....
_---+ll .....

-- At = 132:
p_p .....
p ---*n .....

rt---_p .....

n.---.*?'l .....

At = 164:
p_p .....
p "-'_ n .....

n ---_p .....
_""_n .....

At = 208:
p---,p .....
p ---4 n .....

rt ---+ p .....

Tl----._n .....

0.49

0.40

0.30
0.28

0.45

0.30

0.28

0.21
0.40

0.27
0.25

0.19
0.36

0.25
0.22

0.17
0.31

0.20
0.20

0.13
0.28

0.16
0.18
0.11

0.26

0.14

0.16
0.09

0.23

1.48

1.33

1.04
0.89

1.49

1.21
1.09

0.86
1.53

1.18
1.08

0.81
1.51

1.15
1.06

0.78
1.47

1.00
1.11
0.70

1.45

0.90

1.11
0.63
1.42

0.82

1.03
0.58

1.36

1.81

1.69
1.24

1.08

1.88

1.69
1.46

1 .O8
2.00

1.57
1.45

1.04
1.98

1.55
1.52

1.08
2.03

1.46
1.57
1.00

2.10

1.36

1.60
0.88
2.11

1.27

1.71
0.87

2.10

2.42

2.32

2.46
1.79

2.99

2.35
3.06

1.88
3.55

2.32
3.27

1.86
3.78

2.29
3.47

1.84
3.96

2.21

3.31
1.79

3.86

2.13

3.16
1.72

3.56

2.05

2.97
1.67

3.36

3.22

3.01

3.52
2.51

4.13

3.16
4.49

2.75
5.03

3.18
4.92

2.78
5.40

3.20
5.35
2.44

5.76

3.17
5.20
2.69

6.86

3.15

5.06
2.55

7.94

7.74

7.23
2.41

7.63

3,71

3.53
4.48
3.06

4.83

3.87

5.72
3.41
5.95

3.95
6.35

3.54
6.64

4.04
6,98

3,67
7.33

3.87
7.91

3.52
8.29

3.69
8.86
3.39

9.25

3.51

9.77
3.24

10.21
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Table 3.5.3. Evaporated Ion Yields From Nucleon-Nucleus Collisions

[Values in parentheses are for proton reactions]

At = 16:
d ........

t ........

he ........

OL ........

At = 27:
d ........

t ........

he ........

OL ........

At = 65:
d ........

t ........

he ........

OL ........

At = 100:
d ........

t ........

he ........

OL ........

At = 207:
d ........

t ........

he ........

OL ........

Ion yields at--

500 MeV 1000 MeV 2000 MeV 3000 MeV

0.111 (0.094)

0.022 (0.029)

0.018 (0.034)

0.664 (0.400)

0.126 (0.130)
O.O28(0.023)
0.042 (0.035)
0.370 (0.400)

0.150 (0.171)
0.031 (0.035)

0.013 (0.014)

0.124 (0.137)

0.174 (0.183)
0.028 (0.029)
0.012 (0.017)
0.158 (0.156)

0.131 (0.152)
0.038 (0.037)
0.001 (0.002)
0.053 (O.O63)

0.199 (0.237)
0.024 (0.025)
O.035(0.043)
0.720 (0.696)

0.245(0.269)
o.o48(0.052)
0.067(0.074)
0.550(0.566)

0.379 (0.390)

0.075 (0.068)

0.039 (0.056)

0.231 (0.231)

0.456 (0.475)
0.080 (0.081)
0.055 (0.060)
0.320 (0.339)

0.536 (0.565)
0.152 (0.163)
0.017 (0.017)
0.195 (0.210)

0.257(0.265)
0.033 (0.025)

0.037(0.052)
0.664(0.624)

0.380 (0.396)

0.063 (0.065)

0.073 (0.091)

0.597(0.582)

0.748(0.766)
0.145 (0.145)

0.112 (0.124)

0.373 (0.377)

1.01 (1.02)

0.207 (0.192)
0.162 (0.185)

0.490 (0.467)

1.51 (1.57)

0.415 (0.424)

0.112 (0.106)

0.527 (0.514)

0.304 (0.311)

0.029 (0.029)

0.037 (0.048)

0.640 (0.667)

0.442 (0.433)

0.072 (0.069)

0.083 (0.092)

0.577 (0.577)

0.935 (0.987)

0.177 (0.191)

0.166 (0.177)

0.431 (0.441)

1.44 (1.48)
0.269 (0.273)

0.249 (0.262)

0.549 (0.540)

2.54 (2.54)

0.641 (0.644)

0.211 (0.239)

0.751 (0.746)
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Table3.5.4.MeanEnergiesof LightNuclearFragmentsProducedin Nucleon-NucleusCollisions

[Valuesin parenthesesarefor protonreactions]

At = 16:

p • , . • , .

d . . ° • . .

t ......

he ......

At = 27:
n ......

d ......

he ......

_ • ° ....

At = 65:

p , * ....

d ......

he ......

Og ......

At = 100:

p ......

d , , • • • o

t ......

he ......

O/ ......

At = 207:
r_ ......

p • . , . , ,

d ..... ,

t ..... .

he ......

Mean energies at---

500 MeV 1000 MeV 2000 MeV 3000 MeV

5.55 (6.19)
6.10 (6.40)
8.53 (7.64)
6.40 (7.83)

12.1 (8.76)
9.36 (6.24)

5.08 (5.09)
6.87 (6.90)
9.57 (9.42)
9.16 (9.54)

10.5 (10.8)
12.7 (13.4)

4.24 (4.32)
8.25 (8.30)
9.88 (10.1)

10.0 (10.0)
14.6 (14.1)
12.7 (13.4)

3.90 (3.90)
9.63 (9.62)

11.0 (11.1)
11.3 (11.7)
17.8 (18.7)
16.5 (16.5)

3.28 (3.27)
12.5 (12.5)
13.2 (13.2)
13.6 (13.8)
24.1 (27.0)
25.3 (25.7)

7.91 (7.89)

8.33 (8.69)

12.2 (10.7)

10.6 (10.4)

11.8 (11.2)

12.6 (12.3)

7.34 (7.48)

8.61 (8.92)

10.8 (11.2)

10.8 (11.1)

12.5 (12.8)

13.2 (13.6)

5.67 (5.70)
9.66 (9.76)

13.5 (11.8)
11.7 (11.6)
16.4 (16.2)
13.2 (13.6)

5.13 (5.16)
11.0 (11.0)
12.5 (12.6)
12.6 (13.0)
18.6 (18.8)
16.8 (16.9)

4.37 (4.33)

12.2 (13.4)
14.4 (14.2)

5.0 (15.3)

9.55 (9.81)
9.71 (10.2)

14.9 (14.8)
12.5 (9.74)
11.1 (13.1)
13.1 (14.6)

9.91 (lO.5)
11.1 (11.9)
14.3 (14.8)
13.o (13.9)
13.4 (14.1)
13.8 (13.8)

7.92 (7.91)
12.1 (12.3)
13.8 (14.2)
13,7 (13.8)
17.5 (19.3)
13.8 (13.8)

7.11 (7.04)
12.9 (13.2)
14.4 (15.o)
14.7 (14.3)
20.9 (20.6)
17.5 (17.5)

5,83 (5.78)

14,9 (14.9)

16.0 (16.8)

16.6 (16.8)
26,2 (26.5)

26.0 (26.3)
28.0 (27.8)
26.4 (26.3)

11.1 (9.80)
10.3 (11.2)
16.3 (13.0)
13.7 (10.1)
12.9 (10.3)
13.6 (13.8)

11.6 (12.0)

13,5 (13.7)

17.2 (17.4)

16.6 (13.7)

14.4 (14.5)

14.5 (14.6)

9.67 (9.58)

14.4 (14.2)

15.6 (15.9)
15.1 (15.9)

19.5 (19.2)

14,5 (14.6)

8.61 (8.74)
14.6 (14.7)
16.1 (16.0)
15.5 (16.5)
21.8 (22.2)
17.6 (17.6)

6.90 (6.95)

16.2 (16.3)

17.4 (17.8)

17.4 (17.8)

29.1 (28.5)

25.9 (26.4)
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Table 3.5.5. ap for 160 Fragments Produced by 2.1 GeV Protons

"4

Fragment
150

140

130

16N

15N

14N

13N

12N

15C

14C

13C

12C

11C

lo C

13B

12B

11B

lo B

s B

llBe

lOBe

9Be

?Be

9Li

SLi

7Li

6Li

6He

Value of ap, MeV/c, from--

Experiments Greiner

(ref. 39) Present work (ref. 39)

94±3

99±6

143 ± 14

54+ 11

95±3

112±3

134 ± 2

i53 ± 11

125 ± 19

125 + 3

130 ±3

120 ± 4

162 ± 5

I90 + 9

166 ± 10

163 -t- 8

160 ± 2

175 ± 7

175 ± 22

197 ± 20

159 ± 6

166 ± 7

166 ± 2

188 + 15

170 ± 13

163 + 4

141 ± 7

167 ± 20

80.0

109.5

129.2

55.0

80.0

109.5

129.2

143.4

80.0

109.5

129.2

143.36

153.45

160.3

129.2

143.4

153.5

160.3

165.5

153.5

160.0

164.24

164.24

164.24

165.4

164.24

160.0

160.0

83.8

113.1

133.5

82.8

113.0

133.5

148.1

82.8

113.10

133.5

148.09

158.5

165.6

133.5

148.1

158.5

165.6

171.0

158.5

165.0

169.66

169.66

169.66

171.0

169.66

169.66

165.0

37



Table3.5.6.AverageRecoilEnergyE of 160 Fragments Produced by 2.1 GeV Protons

Fragment

15F

160

150

140

130

16N

15N

14N

13N

12N

11N

14C

13C

12C

11C

10C

9C

13B

12B

11B

l0 B

9B

10Be

9Be

lOLl

9Li

8Li

7Li

6Li

Average energy value, E, MeV,

Bertini

(ref. 46)

2.65

4.19

1.05

.52

1.82

4.24

1.11

.63

1.12

1.84

3.85

5.95

1.62

1.97

2.64

4.70

5.58

4.41

2.35

3.43

4.33

4.79

1.19

4.53

8.76

4.61

2.26

4.41

4.75

5.76

Present

results

1.01

.69

1.01

.69

1,37

2.05

1.01

.69

1.37

2.05

2.74

3.42

1.34

2,05

2.74

3.42

4.11

4.79

2.05

2.74

3.71

4.11

4.79

4.11

4.79

4.11

4.79

5.48

6.16

6.85

from--

Experiments

(ref. 39)

1.01

.88

1.12

2.51

.30

.96

1.42

2.20

3.11

3.64

1.78

2.07

1.91

3.81

5.76

5.10

3.38

3.53

3.42

4.89

4.03

4.89

6.27

5.76

6.06

5.29

i
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Table 3.5.7. Comparison of Fragment Energy-Transfer Cross Sections

Ea of Bertini With Experiments of Greiner/Lindstrom and Present Results

Energy transfer cross sections, Ea, MeV-mb, from

Bertini Greiner/Lindstrom Present

A F (ref. 46) (refs. 39 and 40) results
16

15
14

13

12

ll

10

9

8

7

6

5.04

60.6

48.8
37.6

85.8

37.9

52.8

6.5

2.5

6.11

31.4

0.0006

56.9

51.7

48.3
68.2

99.1

62.0

25.7

7.1

121.7

73.4

0.26

56.4

47.6

62.9

55.8
117.9

58.6

35.1

12.1

152.4

95.1

Total 375.1 614.1 694.2

Table 4.1.1. Ratio of Numerical Solution to Analytic Solution of Equation (4.1.23)
for 500-MeV Protons on a Water Shield

Ratio for shield thickness, x, g/cm 2, o_

E, MeV 10 20 40 60 80
0.1

19.5

120.9

333.3
454.1

1.000

1.000

1.000

1.003

1.031

1.000

.999

.999

.994

1.004

1.004

1.002

1.037

0.998
.997

1.008

.963

1.023
i.024

1.046

Table 4.1.2. Ratio of Numerical Solution to Analytic Solution of Equation (4.1.26)
for Continuous "Space" Proton Spectral Input on a Water Shield

Ratio for shield thickness, x, g/cm 2, of--

E, MeV 10 20 40 60
0.1

11.2

36.3

118.1

383.9

0.994
.994

.997

1.001

.997

0.995
.996

.998

1.003

1.000

0.998

.999

1.002
1.005

.991

0.999

1.001

1.003

1.006
1.000

8O

0.999

1.000

1.005

1.004

.996

39



Table 5.1. Energy Deposition of 0.5-10 MeV Neutrons

[Values in parentheses are from present calculations]

Incident

energy, MeV

0.5

10

Energy deposition from Monte Carlo and present calculations, MeV

Depth, cm

01
(1)

12

45
(5)

56

9 10
(10)

10 11

14 15
(15)

15 16

19 20
(20)

20 21

Proton

0.1107
(0.0856)

.0986

.0418
(.0135)

.0331

.0074
(.0018)

.0059

.0006
(.0013)

.0007

.0002
(.0002)

.0001

Heavy ion

01
(1)

1-2

4-5
(5)

56

9 10
(10)

10 11

14 15
(15)

15 16

19 20
(20)

20- 21

0-1

0.2138
(0.1887)

.1984

.1539
(.0818)

.1349

.0770
(.0298)

.0741

.0301
(.0226)
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Figure 2. The total proton-proton cross section of the present formalism compared with various experiments.
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Figure 11. The total neutron-nucleus cross sections of 3Li, 4Be, and 6C according to the prior data base (ref. 1),
the present formalism, and an evaluated data base (ref. 27).
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Figure 17. The neutron-copper absorption cross section according to the present formalism compared with
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various experiments.
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Figure 38. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
protons produced by 100 MeV protons on oxygen.
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Figure 41. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
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Figure 42. Nucleon cascade spectrum of Bertini compared with present work for neutrons produced by
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Figure 44. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
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Figure 46. Nucleon cascade spectrum of Bertini compared with present work for neutrons produced by
1000 MeV protons on aluminum.

f(E,Eo),

MeV "1

10-2

10-3

10-4

Bertini

Present

10 -5 _ i i t i i i I

0 600 1200 1800 2400

Secondary neutron energy E, MeV

3000

Figure 47. Nucleon cascade spectrum of Bertini compared with present work for neutrons produced by
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Figure 48. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
protons produced by 1000 MeV protons on lead.
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Figure 49. Nucleon cascade spectrum of Bertini compared with cascade spectrum used in present work for
protons produced by 3000 MeV protons on lead.

68

I!1]



10"2

-_ Bertini

--- Present

10-_

f(E,E0),

MeV-1

10-4

10
I I i ! I [ I J

-50 200 400 600 800 1000

Secondary neutron energy E, MeV

Figure 50. Nucleon cascade spectrum of Bertini compared with present work for neutrons produced by
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Figure 51. Nucleon cascade spectrum of Bertini compared with present work for neutrons produced by
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Figure 62. Time-integrated proton flux spectra for three anomalously large solar proton events.
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Figure 63. Nucleon flux variation with energy for indicated t-values of regolith thickness for proton event of
February 1956 (denoted by flare protons o ).
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Figure 64. Nucleon flux variation with energy for indicated t-values of regolith thickness for proton event of

November 1960 (denoted by flare protons u ).
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Figure 65. Nucleon flux variation with energy for indicated t-values of regolith thickness for proton event of
August 1972 (denoted by flare protons = ).
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Figure 66. Predicted 5-cm tissue dose equivalents for slab thicknesses between 0 and 100 cm in simulated lunar
regolith.
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Figure 67. Galactic cosmic ray (GCR) proton flux variation with energy due to incident GCR protons for
indicated t-values of depth in aluminum.
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Figure 68. Neutron flux variation with energy due to incident GCR protons for incident t-values of depth in
aluminum.
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Figure 69. Nucleon vertical flux at martian surface due to incident GCR protons.
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Figure 70. Attenuated surface neutron flux using a 2-g/cm 2 polyethylene shield.
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